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Abstract The electro-magnetohydrodynamic (EMHD) free-convection flow of a weakly conducting fluid (e.g.
seawater) from an electromagnetic actuator is considered. The actuator is a so called Riga-plate which consists of
a spanwise aligned array of alternating electrodes and permanent magnets mounted on a plane surface. This array
generates a surface-parallel Lorentz force which decreases exponentially in the direction normal to the (horizontal)
plate. The free-convection boundary-layer flow induced by this body force is investigated numerically and analyti-
cally. It is shown that a certain length and velocity scale exists on which the flow characteristics are independent
of the material properties of the fluid, as well as of the structural and functional parameters of the actuator. These
universal velocity profiles are calculated numerically at different distances x from the leading edge and are discussed
in some detail, both for the impermeable and the permeable Riga-plate when; in the latter case, a uniform lateral
suction or injection of the fluid is applied. For the flow characteristics analytical approximations are reported. The
asymptotic suction profiles approached for large values of x are given in exact analytical form. From a mathematical
point of view the basic equations of the present boundary-value problem resemble those of the classical Blasius
problem with an inhomogeneous forcing instead of an external flow and, accordingly, a homogeneous asymptotic
condition.

Keywords Boundary layer · Electro-magnetohydrodynamic · Riga-plate

1 Introduction

Boundary-layer control is as old as the boundary-layer theory itself. Suction as an efficient means to control flow
separation was described by Prandtl already in his pioneering paper of 1904. The physical reason of flow separation
is a momentum deficit in the boundary layer which occurs when the fluid, decelerated by viscosity, runs into an
adverse pressure gradient which cannot be overcome by its kinetic energy.

The flow of electrically conducting fluids can be controlled (in addition to the classical methods of suction,
blowing and wall motion) with the aid of electromagnetic body forces which are able to compensate the mentioned
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Fig. 1 Sketch of a Riga plate consisting of an alternating array
of electrodes and permanent magnets. The Lorentz force and the
mainstream velocity are parallel to the array

Fig. 2 The flow configuration and coordinate system

momentum deficit, by “energizing” the boundary layer. The motion of fluids of high electrical conductivity σ (e.g.
liquid metals, semiconductor melts of σ ∼ 106 S/m) can already be influenced significantly by external magnetic
fields of moderate strengths of ∼1 T. This is the classical MHD flow control. In weakly conducting fluids (e.g.
seawater of σ ∼ 10 S/m), however, the currents induced by an external magnetic field alone are too small, and
an external electric field must be applied to achieve an efficient flow control (EMHD flow control). A cross-wise
electric and magnetic field e.g. can produce in this case a wall-parallel Lorentz force able to change the structure
of a pressure-gradient-driven boundary layer and stabilize its motion by slowing down its growth.

An ingenious way to generate a wall-parallel Lorentz force was proposed in the sixties by Gailitis and Lielausis
of the Physics Institute in Riga, Latvia [1]. The flow-control device of Gailitis and Lielausis is an electromagnetic
actuator which consists of a spanwise aligned array of alternating electrodes and permanent magnets, mounted on a
plane surface as sketched in Fig. 1. This set-up, sometimes referred to as Riga-plate [2] can be applied to reduce the
friction and pressure drag of submarines by preventing boundary-layer separation as well as by diminishing turbu-
lence production. As was proved few years later by Tsinober and Shtern [3] as an effect of the wall-parallel Lorentz
force, the stability of the Blasius flow over the Riga plate is actually enhanced. In the boundary-layer calculations
of Tsinober and Shtern [3] for the Lorentz force an averaged expression over the spanwise coordinate reported
earlier by Grinberg [4] has been used. The most important feature of this Grinberg-term of the boundary-layer
momentum equation is that it is fully decoupled from the flow. More precisely, the Gringerg term (i) is independent
of the streamwise velocity u and (ii) it decreases exponentially with the coordinate y measured normal to the plate
(see Eq. 1 below). These properties are in sharp contrast to those of the classical Hartmann-term −σ B2

0 u due to a
uniform magnetic field B0 applied in the y-direction, which acts on the forced-convection flow as a magnetic brake.

After two decades of stagnation, the research interest in Gailitis–Lielausis-type actuators was markedly renewed
in the nineties, mainly with the aim of reducing the skin friction of turbulent boundary layers [5–9]. The effect
of an oscillating wall-parallel Lorentz force in the spanwise direction has been investigated by numerical simu-
lations by Kim [10] and Berger et al. [11]. In both papers substantial reductions of the skin friction in turbulent
boundary layers were found. These predictions have been confirmed by the experiments of Pang and Choi [12].
Direct numerical simulations performed recently by Mutschke et al. [13] have once more confirmed the efficiency
of oscillatory forcing in the separation flow control. Extensions of the electromagnetic control to flows over circu-
lar cylinders have been reported by Kim and Lee [14] and by Posdziech and Grundmann [15], and extensions to
channel flows by Breuer et al. [16]. Comprehensive numerical simulations of drag reduction in a turbulent channel
flow were presented recently by Shatrov and Gerbeth [17]. The first experimental results on the separation control
of flow over hydrofoils were published only few years ago by Weier et al. [18] and Weier and Gerbeth [19]. The
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electromagnetic drag reduction and wall-turbulence suppression by use of transverse traveling waves was examined
by Du and Karniadakis [20] and by Du et al. [21]. The stability of the transitional boundary-layer flow subject to
a wall-parallel Lorentz force has been investigated recently by Albrecht et al. [22], and a significant damping of
the Tollmien–Schlichting waves already by moderate amplitudes of the applied force was reported. A systematic
and comprehensive literature review of the development sketched above of electromagnetic flow control can be
found in the PhD thesis of Weier [23]. The early stage of this development, as well as the contributions of the
Dresden–Rossendorf Magnetohydrodynamics Group, are described by Weier [23] in great detail.

The aim of the present paper is to examine a very basic aspect of the boundary-layer flow of low electrical
conductivity fluids over the Riga-plate. Namely, whereas the whole pertinent research effort has been focused so
far on the control of flows driven by an external free stream, the aim of the present paper is to examine the free-
convection flow induced by this electromagnetic actuator itself. More precisely, we assume that the only driving
force of the boundary-layer flow over a horizontal Riga-plate is the electromagnetic body force described by the
exponentially decaying Grinberg-term of the momentum equation. The characteristics of this free-convection Gai-
litis–Lielausis–Grinberg flow (hereafter GLG flow) are examined in the paper numerically and analytically in some
detail.

2 Basic equations and nondimensionalization

We consider the electro-magnetohydrodynamic free-convection plane boundary-layer flow induced in a weakly
conducting fluid by a so called Riga-plate [1–4]. The Riga-plate consists of an alternating array of electrodes and
permanent magnets mounted on a plane surface as sketched in Fig. 1. The flow is driven over the horizontal plate
solely by a Lorentz force directed parallel to the array. In addition to this electromagnetic body force, no other
driving forces (pressure gradient, moving wall, etc.) are present.

In the general case, the volume density of the Lorentz force is given by the vector product F = j × B, where
j is the electric current density induced in the fluid and B the magnetic induction. According to Ohm’s law, the
current density is obtained as j = σ (E + v × B), where E denotes the electric field, v the fluid velocity and σ the
electrical conductivity of the fluid. In the case of fluids of high electrical conductivity, σ ∼ 106 S/m, a fully contact-
less flow control can be achieved without any external electric filed, since in this case already the current density
σ (v × B) induced by moderate applied magnetic fields of ∼ 1 T is sufficiently strong (MHD flow control). In this
case F = j × B = σ (v × B) × B = σ

[
(v · B) B − B2v

]
. However, in weakly conducting fluids of σ ∼ 10 S/m or

smaller, the current density σ (v × B) is too small, even for magnetic fields of several Tesla. Accordingly, on low-σ
fluids an external electric field must be applied to achieve an efficient flow control (EMHD flow control). In this
case F = j × B ≈ σ (E × B), which implies that in low-σ fluids the Lorentz force becomes independent of the flow
field.

In the case of the Riga-plate shown in Fig. 1, neglecting the edge-effects, both the applied electric and magnetic
fields possess components only in the wall-normal direction y and the spanwise direction z. As a consequence, the
resulting Lorentz force F = σ (E × B) points in the x-direction. Due to the stripwise structure of the plate, near to
its surface strong spanwise variations of F occur [18], which, however, decrease rapidly with increasing distance y.
As was first shown by Grinberg [4], the force density F = Fex averaged over the spanwise coordinate z becomes
an exponentially decreasing function of y, namely

〈F〉 = π

8
j0 M0 exp

(
−π

a
y
)

, (1)

where j0 (A/m2) is the applied current density in the electrodes, M0 (Tesla) is the magnetization of the permanent
magnets and a is the width of magnets and electrodes (see also [2], as well as the Appendix of [11]). Accordingly, the
governing continuity and momentum-balance equations of the incompressible Gailitis–Lielausis–Grinberg (GLG)
boundary-layer flow are
∂u

∂x
+ ∂v

∂y
= 0, (2)
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u
∂u

∂x
+ v

∂u

∂y
= υ

∂2u

∂y2 + 〈F〉
ρ

. (3)

In the above equations u and v denote the velocity components in the x- and y-direction, respectively, υ is the
kinematic viscosity and ρ the density of the fluid. As already mentioned, in contrast to the classical Hartmann-term,
−σ B2

0 u/ρ, the Grinberg term, 〈F〉 /ρ, of the momentum equation does not depend on the flow velocity.
In the following considerations we generally assume that the plate is permeable and that a constant lateral suction

or injection of the fluid may be applied. Accordingly, the boundary conditions are

u|y=0 = 0, v|y=0 = −v0, u|y→∞ → 0. (4)

Introducing the dimensionless quantities

X = x

l
, Y = y

L
, U = u

u0
, V = v

v0
, (5)

l = j0 M0a4

8π3ρυ2 , L = a

π
, u0 = π2υl

a2 = j0 M0a2

8πρυ
, v0 = πυ

a
= υ

L
, (6)

we observe that the balance equations (2), (3) and the boundary conditions (4) go over in the non-dimensional forms

∂U

∂ X
+ ∂V

∂Y
= 0, (7)

U
∂U

∂ X
+ V

∂U

∂Y
= ∂2U

∂Y 2 + e−Y , (8)

U |Y=0 = 0, V |Y=0 = −V0, U |Y→∞ → 0. (9)

A very basic feature of this GLG boundary-layer flow is that its dimensionless governing equations (7)–(9) are
independent of the fluid properties ρ and υ, the magnetic properties j0 and M0, as well as the structural property
a of the plate. In other words, the EMHD free-convection boundary-layer flow driven over a Riga-plate by the
wall-parallel Lorentz force possesses universal characteristics.

3 Characteristics of the velocity field

Equations (7–9) specify a two-dimensional parabolic problem. Such a flow has a dominant velocity component U
in the direction along the plate. We have solved these equations directly by using the finite-difference method of
Patankar [24]. The solution procedure starts with a trial velocity distribution at the plate edge (X = 0) and marches
along the plate. At the plate edge the trial velocity was taken uniform with a very small value. At each downstream
position the discretized equation (8) is solved using the tridiagonal matrix algorithm (TDMA). Subsequently the
cross-stream velocity component V was obtained from the continuity equation. The forward step size �X increases
in proportion to the width of the calculation domain and was 1% of the outer boundary. In order to obtain a com-
plete form of the velocity profile, we used a nonuniform lateral grid. �Y takes small values near the surface (many
grid points near the surface) and increases along Y . The number of lateral grid cells was 500. The boundary-layer
thickness changes along X . For that reason, the calculation domain must always be at least equal or wider than the
boundary-layer thickness. Here an expanding grid has been used according to the equation

Yout = Y0 + cX, (10)

where Yout is the outer boundary of the calculation domain, c is the spreading rate of the outer boundary and X is
the distance at the current step (see Fig. 2). In every case we tried to have a calculation domain wider than the real
boundary-layer thickness. This was done by trial and error. If the calculation domain was thin, the velocity profiles
were truncated. In this case we used another wider calculation domain to capture the entire velocity profile. This
was done by changing the coefficient c in (10).
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Fig. 3 a Mainstream velocity profiles over the impermeable plate (V0 = 0) at different dimensionless distances X from the leading
edge. b Dependence of the maximum velocity Umax (X) and of the skin friction τw (X) on X for the mainstream velocity profiles shown
in Fig. 3a

Table 1 Values of the skin
friction τw , the maximum
velocity Umax and of its
distance Y = Ymax from the
impermeable plate
(V0 = 0), at different
distances X from the
leading edge. With
increasing X , the maximum
velocity and the skin
friction, both approach the
value 1

X τw Umax Ymax (exact) Ymax = − log (1 − τw)

(Eq. 29)

10 0.8727 0.6135 2.1225 2.0612

20 0.9011 0.6746 2.3669 2.3136

50 0.9357 0.7604 2.8769 2.7442

100 0.9537 0.8121 3.1096 3.0726

500 0.9790 0.8974 3.8995 3.8632

1000 0.9858 0.9241 4.2943 4.2545

5000 0.9939 0.9598 5.0927 5.0994

10000 0.9967 0.9707 5.5657 5.7138

3.1 Impermeable plate

In Fig. 3a the mainstream velocity profiles U (X, Y ) are shown as functions of Y at different dimensionless distances
X from the plate leading edge. It is seen that the thickness of the velocity boundary layer, the maximum velocity
Umax = Umax (X) and the dimensionless skin friction τw (X) = ∂U/∂Y |Y=0 (which, from a geometrical point
of view, represents the slope of the mainstream velocity profiles at the wall), all increase with increasing values
of X . This X -dependence of Umax (X) and τw (X) is plotted in Fig. 3b. The asymptotic behavior seen in Fig. 3b is
confirmed by the results of our numerical calculations. The maximum velocity and the skin friction, both approach
the value 1 as X → +∞,

lim
X→∞ Umax (X) = lim

X→∞ τw (X) = 1. (11)

At the same time the thickness of the boundary layer goes to infinity. A selection of the corresponding numerical
values of τw, Umax and Ymax is collected in Table 1.
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3.2 Uniform suction

We first consider the exactly solvable case which describes the asymptotic suction profile. The asymptotic suction
profile is approached far away from the leading edge and results in the quasi-parallel-flow solution

U = U (Y ; V0) , V = const. = −V0 (12)

of the problem (7–9). It is easily obtained by elementary integrations and has the form

U = e−Y − e−V0Y

V0 − 1
, for V0 �= 1 (13a)

and

U = Y e−Y , for V0 = 1, (13b)

respectively.
The slope of all the velocity profiles (13) at the wall, i.e., the dimensionless skin friction, is the same for all

values of the suction velocity V0, namely

U ′ (0; V0) = 1, (14)

where a prime denotes differentiation with respect to Y . The velocity (13) reaches the maximum value

Umax (V0) = V
V0

1−V0
0

(15)

at

Y ≡ Ymax (V0) = log (V0)

V0 − 1
. (16)

It is easy to show that Umax and Ymax given by Eqs. 15 and 16 are related to each other by the simple relationship

V0Umax exp (Ymax) = 1 (17)

In the case V0 → 1, Eqs. 15 and 16 go over in Umax = 1/e = 0.36788 and Ymax = 1, respectively, in full agreement
with Eqs. 13b and 17. Furthermore,

Umax → 1, Ymax → +∞ as V0 → 0, (18)

Umax → 0, Ymax → 0 as V0 → +∞. (19)

In Fig. 4 some of the velocity profiles (13) are shown for different values of V0. In Fig. 5 the numerically calculated
mainstream velocity profiles U = U (X, Y ; V0) are shown for the suction velocity V0 = 0.1, at different dimension-
less distances X from the leading edge. We see that, as X increases, these velocity profiles approach the asymptotic
suction profile, as expected. For the case shown in Fig. 5 this happens approximately at the downstream station
X = 400. This so called Iglisch-length, i.e., the downstream distance X = XIglisch (V0) at which the boundary layer
reaches its asymptotic shape, decreases as the suction velocity increases, again in full agreement with our physical
expectation. The dimensionless skin friction τw (X; V0) = ∂U/∂Y |Y=0, i.e., the slope of the mainstream velocity
profile at the wall, approaches the value 1 for all V0 > 0 as the profiles approach the asymptotic state,

τw (X; V0) = 1 for X ≥ XIglisch (V0) and all V0 > 0. (20)

This numerical result is in full agreement with (14). The maximum velocity, as well as the distance Y of the maximum
from the plate, also approaches the values given by Eqs. 15 and 16, respectively. All these features are illustrated by
the numerical values collected in Table 2. In Fig. 6 the Iglisch length is plotted as a function of the suction velocity
V0 > 0. This characteristic (dimensionless) length is defined in practice as the distance X = XIglisch (V0) where
τw (X; V0) reaches 99% of its asymptotic value 1.
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Fig. 4 Plots of the asymptotic suction profiles (13) for four dif-
ferent values of the suction velocity V0

Fig. 5 Mainstream velocity profiles over the permeable plate at
different dimensionless distances X from the leading edge for
the suction velocity V0 = 0.1

Table 2 Values of the skin friction τw , the maximum velocity Umax and of its distance Y = Ymax from the plate, for different suction
velocities V0 and different distances X from the leading edge. With increasing X , all these values approach the values corresponding
to the asymptotic suction profile

V0 X Numerical solution Asymptotic suction profile

τw Umax Ymax τw Umax = V
V0

1−V0
0 Ymax = log (V0)

V0 − 1

0.1 50 0.97362 0.71801 2.32028 1 0.774264 2.55843

100 0.98942 0.75115 2.45528

400 0.99980 0.77375 2.55110

0.5 20 0.99570 0.49633 1.37516 1 0.5 1.38629

50 0.99853 0.49908 1.37812

100 0.99940 0.49994 1.38235

1 5 0.99184 0.36353 0.99532 1 0.36788 1

10 0.99748 0.36697 0.99721

35 0.99901 0.36780 0.99820

3 2 0.99428 0.19174 0.54659 1 0.19245 0.549306

5 0.99653 0.19234 0.54814

7 0.99797 0.19242 0.54922

5 1 0.99205 0.13325 0.39941 1 0.133748 0.402359

2 0.99323 0.13344 0.40027

4 0.99478 0.13372 0.40178
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Fig. 6 The Iglish length XIglisch plotted as a function of the
suction velocity V0 Fig. 7 Mainstream velocity profiles at different dimensionless

distances X from the leading edge for the injection velocity
V0 = −0.1 (solid lines) and V0 = −0.3 (dashed lines)

3.3 Uniform injection

In Fig. 7 some mainstream velocity profiles U = U (X, Y ; V0) are shown for the injection velocities V0 = −0.1
and V0 = −0.3, and various dimensionless distances X from the leading edge. We see that, similarly to the case of
uniform suction shown in Fig. 5, for a given V0, the maximum velocity Umax (X; V0) increases with increasing X
also in this case. However, at some downstream station X = X∗ (V0), it reaches a certain value Umax (X∗; V0) ≡
U∗

max (V0) which does not change any longer when X increases further. For V0 = −0.1 and V0 = −0.3, this
maximum value is U∗

max (−0.1) = 0.91 and U∗
max (−0.3) = 0.77, respectively. Therefore, in the range X ≥ X∗ the

flow consists of a central core of uniform velocity U∗
max (V0) which is flanked at both its inner and other edge by a

thin transition layer connecting the core to the homogeneous U boundary conditions (9). A remarkable quantitative
feature of the flow in the range X ≥ X∗ is that, for a given V0, the dimensionless skin friction τw (X; V0) also
becomes independent of the coordinate X and equals the velocity U∗

max (V0) of the central core

τw (X; V0) = U∗
max (V0) for X ≥ X∗ (21)

The central core appears as a flat maximum the height of which decreases with increasing values |V0| of the injection
velocity. This feature is illustrated in Figs. 8 and 9. In Fig. 8 three mainstream velocity profiles are shown for three
different injection velocities V0 < 0 at the downstream station X = 10 and in Fig. 9 the threshold X = X∗ (V0) of the
central core is plotted as a function of |V0|. All the above features are illustrated by the numerical values collected
in Table 3.

3.4 Analytical estimates

Our differential boundary-value problem (7–9) can be transformed (by standard manipulations) into the integral
form

V (X, Y ) = −V0 −
Y∫

0

∂U (X, Y ′)
∂ X

dY ′ (22)
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Fig. 8 Mainstream velocity profiles over the permeable plate at
the dimensionless distance X = 10 from the leading edge for
various injection velocities V0 < 0

Fig. 9 Shown is, as a function of the injection velocity V0 < 0,
the threshold value X∗ (V0) of the downstream distances X where
the velocity of the central core becomes independent of X . In this
range X > X∗ (V0), the dimensionless skin friction τw (X; V0)

also becomes independent of the coordinate X and equals the
velocity U∗

max (V0) of the central core; see also see Table 3

⎡

⎣V0 +
Y∫

0

∂U
(
X, Y ′)

∂ X
dY ′

⎤

⎦ U (X, Y ) = e−Y + τw (X) − 1 − ∂U (X, Y )

∂Y
+ 2

Y∫

0

U
(
X, Y ′) ∂U

(
X, Y ′)

∂ X
dY ′

(23)

which is still subject to the boundary conditions

U |Y=0 = 0, U |Y→∞ → 0; (24)

the second boundary condition (9), V |Y=0 = −V0, is already incorporated in Eq. 22.
Letting Y → ∞ in Eq. 24, we obtain for the dimensionless skin friction τw(X; V0) = ∂U/∂Y |Y=0 the integral

formula

τw(X) = 1 − 2

∞∫

0

U
∂U

∂ X
dY (25)

Similarly, substituting Y = Ymax (X; V0) in Eq. 25, we obtain for the maximum velocity the equation

Umax (X; V0) = e−Ymax + τw (X) − 1 + 2
∫ Ymax

0 U ∂U
∂ X dY

V0 + ∫ Ymax
0

∂U
∂ X dY

. (26)

Taking into account that the two boundary conditions (24) are homogeneous, it is reasonable to define the thickness
of the GLG boundary layer by the integral relationship

δ (X; V0) =
∫ ∞

0 U (X, Y ) dY

Umax (X; V0)
. (27)

In case of an impermeable plate, V0 = 0, Eq. 26 reduces to

Umax

Ymax∫

0

∂U

∂ X
dY = e−Ymax + τw − 1 + 2

Ymax∫

0

U
∂U

∂ X
dY , (28)
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Table 3 Values of the skin
friction τw , the maximum
velocity Umax and of the
boundary-layer thickness δ,
for different injection
velocities V0, at different
distances X from the
leading edge. With
increasing X , τw and
Umax approach for a given
V0 the same value
τw (V0) = Umax (V0) which
decreases with increasing
values of |V0| and is
independent of X

V0 X τw (X; V0) Umax (X; V0) δ (X; V0)

−0.1 100 0.897 0.836 26.70

300 0.907 0.889 58.60

X∗ = 705 0.909 0.909 115.55

1000 154.34

2000 282.56

−0.3 50 0.768 0.749 30.43

100 0.769 0.766 53.80

X∗ = 155.06 0.769 0.769 78.77

1000 435.95

2000 845.12

−2 1 0.333 0.315 8.53

2 0.333 0.330 15.12

X∗ = 2.76 0.333 0.333 20.17

5 34.80

10 66.83

−5 0.10 0.167 0.147 3.84

0.30 0.167 0.165 10.19

X∗ = 0.48 0.167 0.167 16.15

5 156.01

10 309.29

−10 0.020 0.091 0.080 3.35

0.050 0.091 0.089 6.76

X∗ = 0.072 0.091 0.091 9.35

1 114.53

5 559.32

10 1113.72

15 1669.29

Figure 3a suggests that in the range 0 ≤ Y ≤ Ymax our U is a slowly varying function of X , i.e., ∂U/∂ X is a small
quantity in this interval. Accordingly, we may assume that, to leading order, the integrals in Eq. 28 are zero. Then
0 = e−Ymax + τw − 1, i.e.

Ymax = − log (1 − τw) , (V0 = 0). (29)

In the last column of Table 1, the values of Ymax as calculated from (29) are included. Compared to the “exact”
numerical values of the neighboring column, a good agreement can be seen.

We turn now to the case of a permeable plate with uniform lateral suction of the fluid, V0 > 0. In the special
case U = U (Y ), one immediately recovers the asymptotic suction profiles described in Sect. 3.2. Indeed, Eqs. 22
and 25 yield V (X, Y ) = −V0 and τw (X) = 1, respectively. Equation (23) reduces to

dU

dY
+ V0U (Y ) = e−Y , (30)
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which along with the boundary conditions (24) furnishes, for Vo > 0, the solution (13). Furthermore, Eq. 26 reduces
to (17). For the thickness of the asymptotic suction profiles, Eqs. 27 and 17 give

δ (V0) = 1

V0Umax
= V

− 1
1−V0

0 = eYmax (31)

According to (31), with increasing values of Ymax , i.e., for decreasing values of the suction velocity V0 , the thick-
ness of the corresponding asymptotic suction profile (13) increases exponentially. This result is in full agreement
with the plots shown in Fig. 4.

Figure 5 suggests that at downstream distances smaller than the Iglisch length, XIglisch (V0) the mainstream
velocity U = U (X, Y ) is a slowly varying function of X . Thus, disregarding in (26) the integral terms (which
contain the X -derivative of U ), we obtain the approximation formula

Umax (X; V0) = e−Ymax(V0) + τw (X) − 1

V0
, (X < XIglisch). (32)

This formula shows good agreement with the data of Table 2 in the range X < XIglisch. For example, with the data of
the first row of Table 2, Eq. 32 gives for the maximum velocity Umax (X; V0) the values Umax (50; 0.1) = 0.71866
and Umax (100; 0.1) = 0.75259 which represent good approximations compared to the exact numerical values
0.71801 and 0.75115, respectively. For X ≥ XIglisch (V0), i.e., at and above the Iglisch length, as was already
described in Sect. 3.2, all the characteristics of the free-convection GLG boundary-layer approach those of the
asymptotic suction profile.

The integral equations given above furnish for the mainstream velocity simple approximation formulas, also in
the case of uniform lateral injection of the fluid, V0 < 0. Indeed, at distances X ≥ X∗ where for a flat maximum
Eq. 21 holds, in Eq. 23, in addition to the integral terms, also the exponential term e−Ymax can be neglected, such
that

Umax = τw − 1

− |V0| = 1 − Umax

|V0| , (X ≥ X∗). (33)

Therefore, we obtain for the velocity of the central core the simple relationship

Umax = 1

1 + |V0| , (X ≥ X∗). (34)

The values calculated from this approximation formula are in excellent agreement with the exact numerical value
of Table 3 (in the range X ≥ X∗).

In case of the massive injection, |V0|  1, a simple approximation formula can also be obtained for the bound-
ary-layer thickness (27) in the range X ≥ X∗. Indeed, letting Y → ∞ in Eq. 22 and having in mind that for massive
blowing the transversal velocity at infinity V (X,∞) can be disregarded compared to V0, we obtain
∞∫

0

∂U

∂ X
dY = |V0|. (35)

Thus, from Eq. 34 the X -derivative of (27) results in

dδ

dX
= 1

Umax

∞∫

0

∂U

∂ X
dY = (1 + |V0|) |V0| . (36)

Consequently,

δ (X; V0) = (1 + |V0|) |V0| X, (X ≥ X∗, |V0|  1). (37)

In Table 4 the values of δ calculated from the approximation formula (37) for V0 = −10 are compared to the exact
numerical values of δ included in Table 3 for X = 1, 5, 10 and 15 (which all are larger than X∗ = 0.072). As we
see, the larger X , the higher the accuracy of (37). It is also worth mentioning here that the boundary-layer thickness
given by (37) is slightly overestimated, but still is a suitable measure of the length of the plateau representing the
flat maximum of the velocity profiles plotted in Fig. 8.
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Table 4 Values of δ calculated from the approximation formula (37) for V0 = −10, and the exact numerical values of δ included in
Table 3 for X = 1, 5, 10 and 15. One sees that the larger X , the higher the accuracy of the approximation formula (37)

X τw = Umax δexact δapprox. (X; V0), Eq. (37) 100
δexact−δapprox.

δexact

1 0.091 114.53 110 3.955%

5 559.32 550 1.666%

10 1113.72 1100 1.232%

15 1669.29 1650 1.155%

4 Conclusions

The free-convection flow of a weakly conducting fluid from a special electromagnetic actuator, a horizontal Riga-
plate, has been investigated by numerical and analytical methods. A spanwise aligned array of alternating electrodes
and permanent magnets of a plate generates a surface-parallel Lorentz force which decreases exponentially in a
direction normal to the plate. This electromagnetic body force is the only driving force of the flow. The main results
of the paper can be summarized as follows.

1. There exists a certain length and velocity scale on which the flow possesses universal characteristics, i.e.,
characteristics which are independent of the material properties of the fluid, as well as of the structural and
functional parameters of the actuator.

2. The qualitative shape of the mainstream velocity profiles induced by the horizontal Riga-plate resembles the
shape of the more familiar natural-convection velocity profiles induced by a heated vertical plate (see e.g.
Figs. 3a, 4 and 5). Bearing in mind that the driving forces of the two flows are physically quite different, this
qualitative resemblance of the mainstream velocities is surprising. Nevertheless, there exists a formal mathe-
matical explanation for this analogy, namely, the exponential decay with the transversal coordinate y of both
the Lorentz force (see the Greenberg-term (1)) in the present case, as well as of the classical Boussinesq term
in the case of natural-convection flow (see e.g. [25, Fig. 4–50, p. 326]).

3. At large downstream distances X from the leading edge of the impermeable plate, the maximum velocity
Umax (X) and the dimensionless skin friction τw (X) both approach the value 1; see Fig. 3a, b.

4. The analytically available asymptotic suction profiles illustrate several of the qualitative features of the main-
stream velocity field; see Figs. 4 and 5. The Iglisch-length, i.e., the downstream distance X = XIglisch (V0) at
which the boundary layer reaches its asymptotic shape, decreases as the suction velocity increases; see Fig. 6.

5. Similar to the case of uniform suction, in the presence of uniform lateral injection of the fluid, the maximum
velocity Umax (X; V0) increases with increasing X, too. However, at some downstream station X = X∗ (V0),
it reaches a certain value U∗

max (V0) which no longer changes when X increases further. Thus, in the range
X ≥ X∗, the flow consists of a central core of uniform velocity U∗

max (V0) which is flanked at both its inner and
other edge by a thin transition layer connecting the core to the boundary conditions. The central core appears
as a flat maximum the height of which decreases with increasing values |V0| of the injection velocity; see
Figs. 7–9.

6. For several characteristics of the mainstream velocity profiles reasonably accurate analytical approximation
formulas have been reported; see Sect. 3.4.

7. No self-similar solutions of the present EMHD free-convection problem have been found.
8. It is also worth emphasizing again that the spanwise variations of the Lorentz force F are significant only

for y < a. However, even in this range, the fluctuations rapidly diminish with increasing y, so that at y = a
the deviation of F from its average value 〈F〉 is only 2% [23, Fig. 2.9, p. 32]. This holds when the lengths h
of the magnets in the direction of magnetisation amount to 0.6a. When h is larger, the fluctuations become
even smaller [23]. In this way, the boundary-layer approximation along with the Grinberg approximation yield
physically reliable results.
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